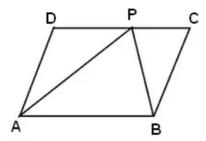
Chapter 21. Areas Theorems on Parallelograms

Ex 21.1

Answer 1.



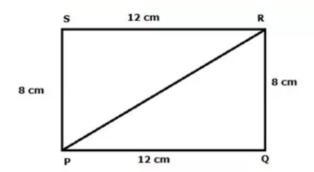
$$ar(\Delta APB) = \frac{1}{2} x ar(parallelogram ABCD)$$

(The area of a triangle is half that of a parallelogram on the same base and between the same parallels)

$$ar(\Delta APB) = \frac{1}{2} \times 60 \text{ cm}^2$$

$$ar(\Delta APB) = 30 cm^2$$

Answer 2.



Since PQRS is a rectangle, therefore PQ = SR.

$$SR = 12 cm$$

$$PS = 8 cm$$

$$ar(\Delta PRS) = \frac{1}{2} \times base \times height$$

$$ar(\Delta PRS) = \frac{1}{2} \times SR \times PS$$

$$ar(\Delta PRS) = \frac{1}{2} \times 12 \times 8$$

$$ar(\Delta PRS) = 48 cm^2$$

Answer 3.

(i)
$$ar(\Delta QTS) = \frac{1}{2} x ar(parallelogram QTSR)$$

(The area of a triangle is half that of a parallelogram on the same base and between the same parallels)

- \Rightarrow ar(parallelogram QTSR) = 2 x ar(\triangle QTS)
- ⇒ar(parallelogram QTSR) = 2 x 60 cm²
- ⇒ar(parallelogram QTSR) = 120 cm²
- (ii) $ar(\Delta QTS) = \frac{1}{2} \times ar(parallelogram QTSR)$

$$ar(\Delta QTS) = ar(\Delta RSQ) = 60 cm^2$$

Now,

$$ar(\Delta RSQ) = \frac{1}{2} \times ar(rectangle PQRS)$$

- \Rightarrow ar(rectangle PQRS) = 2 x ar(\triangle RSQ)
- \Rightarrow ar(rectangle PQRS) = 2 x 60 cm²
- ⇒ar(rectangle PQRS) = 120 cm²
- (iii) Since PQRS is a rectangle,

Therefore
$$RS = PQ(i)$$

QTSR is a parallelogram,

From (i) and (ii)

In ∆PSQ and ∆QST

$$QS = QS$$

$$PQ = QT$$
 (from (iii))

$$\angle PQS = \angle SQT = 90^{\circ}$$

Therefore, $\Delta PSQ \cong \Delta QST$

Area of two congruent triangles is equal.

Hence,
$$ar(\Delta PSQ) = ar(\Delta QTS) = 60 \text{ cm}^2$$

Answer 7.

$$ar(\Delta APD) = \frac{\sqrt{3}s^2}{4}$$

$$ar(\Delta APD) = \frac{\sqrt{3} \times 8^2}{4}$$

$$ar(\Delta APD) = \frac{\sqrt{3} \times 64}{4}$$

$$ar(\Delta APD) = \sqrt{3} \times 16 = 16\sqrt{3}cm^2$$

$$ar(\Delta APD) = \frac{1}{2} \times ar(parallelogram ABCD)$$

(The area of a triangle is half that of a parallelogram on the same base and between the same parallels)

- \Rightarrow ar(parallelogram ABCD) = 2 x ar(\triangle APD)
- \Rightarrow ar(parallelogram ABCD) = 2 x 16 $\sqrt{3}$ cm²
- \Rightarrow ar(parallelogram ABCD) = $32\sqrt{3}$ cm²

Answer 8.

 Area of a rectangle and area of a parallelogram on the same base is equal.

Here,

For rectangle PQMN, base = PQ

For parallelogram PQRS, base = PQ

Therefore, Area of rectangle PQMN = Area of parallelogram PQRS

Area of rectangle PQMN = 84 cm^2

(ii)
$$ar(\Delta PQS) = \frac{1}{2} \times ar(parallelogram PQRS)$$

$$ar(\Delta PQS) = \frac{1}{2} \times 84 \text{ cm}^2$$

$$ar(\Delta PQS) = 42 cm^2$$

(iii)
$$ar(\Delta PQN) = \frac{1}{2} \times ar(rectangle PQMN)$$

$$ar(\Delta PQN) = \frac{1}{2} \times 84 \text{ cm}^2$$

$$ar(\Delta PQN) = 42 cm^2$$

Answer 9.

In quadrilateral PQST, $ar(\Delta PQS) = \frac{1}{2} \times ar(quadrilateral PQST)$ $ar(quadrilateral PQST) = 2ar(\Delta PQS) \dots (i)$ $In \Delta PSR,$ $ar(\Delta PSR) = ar(\Delta PQS) + ar(\Delta QSR)$ $but ar(\Delta PQS) = ar(\Delta QSR)$ (since QS is median as QS||TP)) $ar(\Delta PSR) = 2ar(\Delta PQS)$ (ii) From (i) and (ii) $ar(quadrilateral PQST) = ar(\Delta PSR)$

Answer 14.

In parallelogram ABCD,

$$ar(\Delta ABC) = \frac{1}{2} \times ar(parallelogram ABCD)$$

(The area of a triangle is half that of a parallelogram on the same base and between the same parallels)

$$ar(parallelogram ABCD) = 2ar(\Delta ABC)(i)$$

In AACE,

$$ar(\Delta ACE) = ar(\Delta ABC) + ar(\Delta BCE)$$

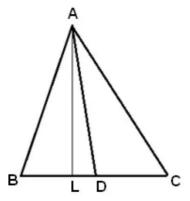
but
$$ar(\Delta ABC) = ar(\Delta BCE)$$
 (since BC is median)

$$ar(\Delta ACE) = 2ar(\Delta ABC)$$
(ii)

From (i) and (ii)

 $ar(parallelogram ABCD) = ar(\Delta ACE)$

Answer 16.



Draw AL perpendicular to BC.

Since AD is median of ΔABC. Therefore, D is the mid-point of BC.

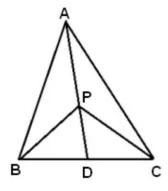
$$\Rightarrow$$
 BD = DC

$$\Rightarrow$$
BD x AL = DC x AL (multiplying by AL)

$$\Rightarrow \frac{1}{2}$$
 (BD x AL) = $\frac{1}{2}$ (DC x AL)

$$\Rightarrow$$
ar(\triangle ABD) = ar(\triangle ADC)

Answer 17.



AD is the median of Δ ABC. So, it will divide Δ ABC into two triangles of equal areas.

Therefore, Area (\triangle ABD) = area (\triangle ACD) ... (1)

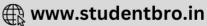
Now PD is the median of APBC.

Therefore, Area ($\triangle PBD$) = area ($\triangle PCD$)... (2)

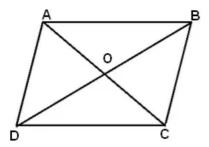
Subtract equation (2) from equation (1), we have

Area (\triangle ABD) – area (\triangle PBD) = Area (\triangle ACD) – Area (\triangle PCD)

Area ($\triangle ABP$) = area ($\triangle ACP$)



Answer 19.



The diagonals of a parallelogram bisect each other.

Therefore, O is the mid-point of AC and BD.

BO is the median in \triangle ABC. Therefore, it will divide it into two triangles of equal areas.

$$\therefore$$
 ar($\triangle AOB$) = ar($\triangle BOC$).....(i)

In ABCD, CO is the median.

$$\therefore$$
 ar($\triangle BOC$) = ar($\triangle COD$).....(ii)

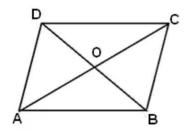
Similarly, $ar(\Delta COD) = ar(\Delta AOD).....(iii)$

From (i), (ii) and (iii)

$$ar(\Delta AOB) = ar(\Delta BOC) = ar(\Delta COD) = ar(\Delta AOD)$$

Hence, diagonals of a parallelogram divide it into four triangles of equal areas.

Answer 20.



In AABD,

$$BO = OD$$

⇒0 is the mid-point of BD

⇒AO is a median.

$$\Rightarrow ar(\triangle AOB) = ar(\triangle AOD)$$
(i)

In ΔCBD, O is the mid-point of BD

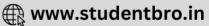
⇒CO is a median.

$$\Rightarrow ar(\triangle COB) = ar(\triangle COD)$$
(ii)

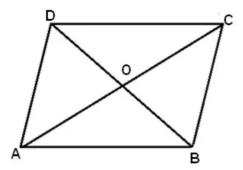
Adding (i) and (ii)

$$ar(\Delta AOB) + ar(\Delta COB) = ar(\Delta AOD) + ar(\Delta COD)$$

Therefore, $ar(\Delta ABC) = ar(\Delta ADC)$



Answer 21.



Since the diagonals of a rhombus intersect at right angles,

Therefore, OB \perp AC and OD \perp AC

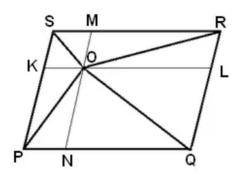
Now, ar(rhombus ABCD) = ar(
$$\triangle$$
ABC) + ar(\triangle ADC)
= $\frac{1}{2}$ (AC×BO) + $\frac{1}{2}$ (AC×DO)

$$= \frac{1}{2} \{AC \times (BO + DO)\}$$

$$=\frac{1}{2}(AC \times BD)$$

Therefore, the area of a rhombus is equal to half the rectangle contained by its diagonals.

Answer 22.



Let us draw a line segment KL, passing through point O and parallel to line segment PQ.

In parallelogram PQRS,

PQRS is a parallelogram.

$$\therefore$$
 PS || QR (Opposite sides of a parallelogram)

From equations (1) and (2), we obtain

PQ || KL and PK || QL

Therefore, quadrilateral PQLK is a parallelogram.

It can be observed that Δ POQ and parallelogram PQLK are lying on the same base PQ and between the same parallel lines PK and QL.

$$\therefore$$
 Area (ΔPOQ) = $\frac{1}{2}$ Area (parallelogram PQLK) ... (3)

Similarly, for AROS and parallelogram KLRS,

Area (
$$\Delta ROS$$
) = $\frac{1}{2}$ Area (parallelogram KLRS) ... (4)

Adding equations (3) and (4), we obtain

Area (
$$\triangle$$
POQ) + Area (\triangle ROS) = $\frac{1}{2}$ Area (parallelogram PQLK) + $\frac{1}{2}$ Area (parallelogram KLRS)

Area (
$$\triangle POQ$$
) + Area ($\triangle ROS$) = $\frac{1}{2}$ Area (PQRS)(5)

Let us draw a line segment MN, passing through point OP and parallel to line segment PS.

In parallelogram PQRS,

PQRS is a parallelogram.

From equations (6) and (7), we obtain

MN || PS and PN || SN

Therefore, quadrilateral PNMS is a parallelogram.

It can be observed that \triangle POS and parallelogram PNMS are lying on the same base PS and between the same parallel lines PS and MN.

∴ Area (
$$\triangle$$
SOP) = $\frac{1}{2}$ Area (PNMS)... (8)

Similarly, for AQOR and parallelogram MNQR,

Area (
$$\Delta QOR$$
) = $\frac{1}{2}$ Area (MNQR) ... (9)

Adding equations (8) and (9), we obtain

Area (
$$\triangle$$
SOP) + Area (\triangle QOR) = $\frac{1}{2}$ Area (PNMS) + $\frac{1}{2}$ Area (MNQR)

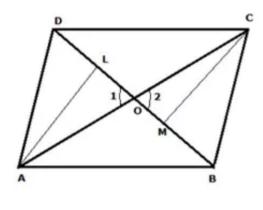
Area (
$$\triangle$$
SOP) + Area (\triangle QOR) = $\frac{1}{2}$ Area (PQRS)(10)

On comparing equations (5) and (10), we obtain

Area (
$$\triangle POQ$$
) + Area ($\triangle ROS$) = Area ($\triangle SOP$) + Area ($\triangle QOR$) =

$$\frac{1}{2}$$
 Area(\parallel gm PQRS)

Answer 23.



Join AC. Suppose AC and BD intersect at O. Draw AL and CM perpendicular to BD.

$$ar(\Delta ABD) = ar(\Delta BDC)$$

Thus \triangle ABD and \triangle ABC are on the same base AB and have equal area.

Therefore, their corresponding altitudes are equal i.e. AL = CM.

Now, in \triangle ALO and \triangle CMO,

$$\angle 1 = \angle 2$$
 (vertically opposite angles)

$$\angle ALO = \angle CMO$$
 (right angles)

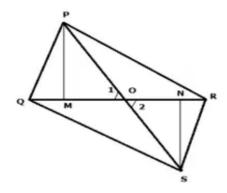
$$AL = CM$$

Therefore, $\triangle ALO \cong \triangle CMO$ (AAS axiom)

$$\Rightarrow$$
AO = OC

⇒BD bisects AC

Answer 26.



Join PS. Suppose PS and QR intersect at O. Draw PM and SN perpendicular to QR.

$$ar(\Delta PQR) = ar(\Delta SQR)$$

Thus \triangle PQR and \triangle SQR are on the same base QR and have equal area.

Therefore, their corresponding altitudes are equal i.e. PM = SN.

Now, in $\triangle PMO$ and $\triangle SNO$,

$$\angle 1 = \angle 2$$
 (vertically opposite angles)

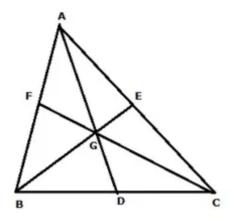
$$\angle PMO = \angle SNO$$
 (right angles)

$$PM = SN$$

Therefore, $\triangle PMO \cong \triangle SNO$ (AAS axiom)

⇒QR bisects PS

Answer 27.



The median of a triangle divides it into two triangles of equal areas.

In ABC, AD is the median

$$\Rightarrow ar(\triangle ABD) = ar(\triangle ACD)$$
(i)

In Δ GBC, GD is the median

$$\Rightarrow ar(\Delta GBD) = ar(\Delta GCD)$$
(ii)

Subtracting (ii) from (i),

$$ar(\Delta ABD) - ar(\Delta GBD) = ar(\Delta ACD) - ar(\Delta GCD)$$

$$\Rightarrow$$
 ar(\triangle AGB) = ar(\triangle AGC)(iii)

Subtracting (ii) from (i),

$$ar(\Delta ABD) - ar(\Delta GBD) = ar(\Delta ACD) - ar(\Delta GCD)$$

$$\Rightarrow$$
 ar(\triangle AGB) = ar(\triangle AGC)(iii)

Similarly,
$$ar(\Delta AGB) = ar(\Delta BGC)$$
(iv)

From (iii) and (iv),

$$ar(\Delta AGB) = ar(\Delta BGC) = ar(\Delta AGC)$$
(v)

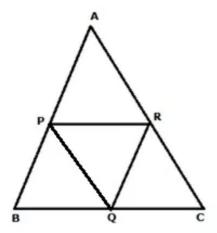
But ar(
$$\triangle$$
AGB) + ar(\triangle BGC) + ar(\triangle AGC) = ar(\triangle ABC)

Therefore, $3 \operatorname{ar}(\Delta \operatorname{AGB}) = \operatorname{ar}(\Delta \operatorname{ABC})$

$$\Rightarrow$$
 ar(\triangle AGB) = $\frac{1}{3}$ ar(\triangle ABC)

Hence,
$$ar(\Delta AGB) = ar(\Delta AGC) = ar(\Delta BGC) = \frac{1}{3}ar(\Delta ABC)$$
.

Answer 28.



Since P and R are mid-points of AB and AC respectively.

Therefore, PR||BC and PR = $\frac{1}{2}$ BC(i)

Also Q is mid-point of BC,

$$\Rightarrow$$
 QC = $\frac{1}{2}$ BC(ii)

From (i) and (ii)

PR||BC and PR = QC

 \Rightarrow PR||QC and PR = QC(iii)

Similarly Q and R are mid-points of BC and AC respectively Therefore, QR||BP and QR = BP(iv)

Hence, BQRP is a parallelogram.

⇒PQ is a diagonal of ||gm BQRP

$$ar(\Delta PQR) = ar(\Delta BQP)$$
(v) (diagonal of a ||gm divides it into two triangles of equal areas)

Similarly QCRP and QRAP are
$$||gm|$$
 and $ar(\Delta PQR) = ar(\Delta QCR) = ar(\Delta APR)$ (vi)

From (v) and (vi)
$$ar(\Delta PQR) = ar(\Delta BQP) = ar(\Delta QCR) = ar(\Delta APR)$$

Now,
$$ar(\Delta ABC) = ar(\Delta PQR) + ar(\Delta BQP) + ar(\Delta QCR) + ar(\Delta APR)$$

 $\Rightarrow ar(\Delta ABC) = ar(\Delta PQR) + ar(\Delta PQR) + ar(\Delta PQR) + ar(\Delta PQR)$
 $\Rightarrow ar(\Delta ABC) = 4ar(\Delta PQR)$

$$\Rightarrow$$
 ar(\triangle PQR) = $\frac{1}{4}$ ar(\triangle ABC)(vii)

$$ar(||gmBQRP) = ar(\Delta PQR) + ar(\Delta BQP)$$

$$\Rightarrow$$
 ar(||gmBQRP) = ar(\triangle PQR) + ar(\triangle PQR) (from (v))

$$\Rightarrow$$
 ar(||gm BQRP) = 2ar(\triangle PQR)

$$\Rightarrow \quad \operatorname{ar}(||\operatorname{gm}\operatorname{BQRP}) = 2 \times \frac{1}{4} \operatorname{ar}(\Delta \operatorname{ABC}) \qquad (\operatorname{from}(\operatorname{vii}))$$

$$\Rightarrow$$
 ar(||gm BQRP) = $\frac{1}{2}$ ar(\triangle ABC)

Answer 31.

Area (
$$\triangle PQR$$
) = area ($\triangle PQS$) + area ($\triangle PSR$)....(i)

Since PS is the median of Δ PQR and median divides a triangle into two triangles of equal area.

Therefore, area (
$$\triangle PQS$$
) = area ($\triangle PSR$)(ii)

Substituting in (i)

Area (
$$\triangle PQR$$
) = area ($\triangle PSR$) + area ($\triangle PSR$)

Area (
$$\triangle PQR$$
) = 2area ($\triangle PSR$)(iii)

Area (
$$\Delta$$
PSR) = area (Δ PST) + area (Δ PTR)(iv)

Since PT is the median of Δ PSR and median divides a triangle into two triangles of equal area.

Therefore, area (
$$\Delta PST$$
) = area (ΔPTR)(v)

Substituting in (iv)

Area (
$$\Delta$$
PSR) = 2area (Δ PTR)(vi)

Substituting in (iii)

Area (
$$\Delta$$
PQR) = 2 x 2area (Δ PTR)

Area (
$$\triangle PQR$$
) = 4area ($\triangle PTR$)(vii)

Area (
$$\Delta$$
PTR) = area (Δ PMR) + area (Δ MTR)(viii)

Since MR is the median of ΔPTR and median divides a triangle into two triangles of equal area.

Therefore, area (
$$\triangle PMR$$
) = area ($\triangle MTR$)(ix)

Substituting in (viii)

Area (
$$\Delta$$
PTR) = 2area (Δ PMR)(x)

Substituting in (vii)

Area (
$$\triangle PQR$$
) = 4 x 2area ($\triangle PMR$)

Area (
$$\triangle PQR$$
) = 8 x area ($\triangle PMR$)

area (
$$\triangle PMR$$
) = $\frac{1}{8}$ area ($\triangle PQR$)

Answer 32.

Since the diagonals of a parallelogram divide it into four triangles of equal area

Therefore, area of $\triangle AOD$ = area $\triangle BOC$ = area $\triangle ABO$ = area $\triangle CDO$.

$$\Rightarrow$$
 area ΔBOC = $\frac{1}{4}$ area (||gm ABCD)(i)

In | | gm ABCD, BD is the diagonal

Therefore, area ($\triangle ABD$) = area ($\triangle BCD$)

$$\Rightarrow$$
area (ΔBCD) = $\frac{1}{2}$ area (||gm ABCD).....(ii)

In | | gm BPCD, BC is the diagonal

Therefore, area ($\triangle BCD$) = area ($\triangle BPC$)(iii)

From (iii) and (ii)

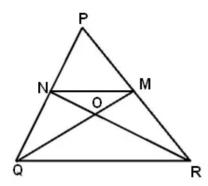
area (
$$\triangle BPC$$
) = $\frac{1}{2}$ area (||gm ABCD)(iv)

adding (i) and (iv)

area (
$$\triangle$$
BPC) + area \triangle BOC = $\frac{1}{2}$ area (||gm ABCD) + $\frac{1}{4}$ area (||gm ABCD)

Area of OBPC =
$$\frac{3}{4}$$
 area of ABCD

Answer 33.



Join MN. Since the line segment joining the mid-points of two sides of a triangle is parallel to the third side; so, MN||QR

Clearly, ΔQMN and ΔRNM are on the same base MN and between the same parallel lines.

Therefore, area (ΔQMN) = area (ΔRNM)

$$\Rightarrow$$
Area (ΔQMN) – area (ΔONM) = area (ΔRNM) – area (ΔONM)

$$\Rightarrow$$
area (ΔQON) = area (ΔROM)(i)

We know that a median of a triangle divides it into two triangles of equal areas.

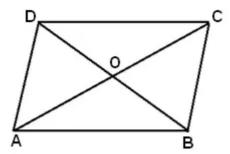
Therefore, area ($\triangle QMR$) = area ($\triangle PQM$)

$$\Rightarrow$$
area (ΔROQ) + area(ΔROM) = area (quad. PMON) + area (ΔQON)

$$\Rightarrow$$
area (ΔROQ) + area(ΔROM) = area (quad. PMON) + area (ΔROM) (from (i))

$$\Rightarrow$$
 area (\triangle ROQ) = area (quad. PMON)

Answer 37.



Since the diagonals of a parallelogram bisect each other at the point of intersection.

Therefore, OB = OD and OA = OC

In ΔABC , OB is the median and median divides triangle into two triangles of equal areas

Therefore, area ($\triangle BOC$) = area ($\triangle ABO$)(i)

In ΔADC , OD is the median and median divides triangle into two triangles of equal areas

Therefore, area ($\triangle AOD$) = area ($\triangle CDO$)(ii)

Adding (i) and (ii)

area ($\triangle AOD$) + area ($\triangle BOC$) = area ($\triangle ABO$) + area ($\triangle CDO$)

